University of Heidelberg

Research Methods - Thermochronology

References

  • Barbarand, J., Carter, A., Wood, I. and Hurford, T., 2003a. Compositional and structural control of fission-track annealing in apatite. Chem. Geol. 198: 107-137.

  • Barbarand, J., Hurford, T. and Carter, A., 2003b. Variation in apatite fission-track length measurement: implications for thermal history modeling. Chem. Geol. 198: 77-106.

  • Braun, J., 2002. Quantifying the effect of recent relief changes on age-elevation relationships. EPSL 200: 331-343.

  • Braun, J., 2003. Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computer & Geosciences 29: 787-794.

  • Braun, J., 2005. Quantitative constraints on the rate of landform evolution derived from low-temperature thermochronology. In: Reiners, P.W., Ehlers, T.A. (eds.), Low-Temperature Thermochronology: Techniques, Interpretations, and Applications. Rev. Min. and Geoch. 58, 351-374.

  • Braun, J., Beaumont, C., 1989. A physical explanation of the relationship between flank uplifts and the breakup unconformity at rifted continental margins. Geology 17, 760-764.

  • Braun, J., van der Beek, P., Batt, G., 2006. Quantitative Thermochronology. Cambridge University Press.

  • Burtner, R.L., Nigrini, A. and Donelick, R. A., 1994. Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming Thrust Belt. AAPG Bull. 78: 1613-1636.

  • Carlson, W.D., Donelick, R.A., and Ketcham, R.A., 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results. American Mineralogist, 84: 1213-1223.

  • Crowley, K.D., Cameron, M. and Schaffer, L.R., 1991. Experimental studies of annealing of etched fission tracks in fluorapatite. Geochim. Cosmochim Acta 55: 1449-1465.

  • Donelick, R.A., 1991. Crystallographic orientation dependence of mean etchable fission-track length in apatite: An empirical model and experimental observations. Am. Mineral. 76: 83-91.

  • Donelick, R.A., Roden, M.K., Mooers, J.D., Carpenter, B.S. and Miller, D.S., 1990. Etchable length reduction of induced fission tracks in apatite at room temperature, ~ 23 °C. crystallographic orientation effects and “initial” mean lengths. Nucl. Tracks. Radiat. Meas. 17: 261-265.

  • Donelick, R.A., Ketcham, R.A. and Carlson, W.D., 1999. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. Am. Min. 84: 1224-1234.

  • Dörr, W., Fiala, J., Vejnar, Z. and Zulauf, G., 1998a. U-Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex - evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). Geol. Rundsch., 87, 135-149.

  • Dörr, W., Zulauf, G., Fiala, J., Franke, W., Haack, U., Philippe, S., Schastok, J., Scheuvens, D., Vejnar, Z., and Wulf, S., 1998b Cambrian transtensional and Variscan normal fault related plutons: Tectonothermal evolution within the Tepla-Barrandian (Bohemian Massif, Czech-Republic). Terra Nostra, 98/2, 42-46.

  • Duddy, I. R., Green, P. F. and Laslett, G. M., 1988. Thermal annealing of fission tracks in apatite 3: variable temperature behaviour. Chem. Geol. 73: 25-38.

  • Dunai, T.J. 2005. Forward modeling and interpretation of (U-Th)/He ages. In: Reiners, P.W., Ehlers, T.A. (eds.), Low-Temperature Thermochronology: Techniques, Interpretations, and Applications. Rev. Min. and Geoch. 58, 259-274.

  • Dunkl, I., 2002. Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computer & Geosciences 28: 3-12.

  • Ehlers, T.A., 2005. Crustal thermal processes and the interpretation of thermochronometer data. In: Reiners, P.W., Ehlers, T.A. (eds.), Low-Temperature Thermochronology: Techniques, Interpretations, and Applications. Rev. Min. and Geoch. 58, 315-350.

  • Ehlers, T.A. and Farley, K.A., 2003. Apatite, U-Th./He thermochronometry: methods and applications to problems in tectonic and surface processes. EPSL 206: 1-14.

  • Ehlers, T.A., Chaudhri, T., Kumar, S., Fuller, C.W., Willett, S.D., Ketcham, R.A., Brandon, M.T., Belton, D.X., Kohn, B.P., Gleadow, A.J.W, Dunai, T.J., Fu, F.Q., 2005. In: Reiners, P.W., Ehlers, T.A. (eds.), Low-Temperature Thermochronology: Techniques, Interpretations, and Applications. Rev. Min. and Geoch. 58, 589-622.

  • Farley, K.A., 2002. (U-Th)/He dating: Techniques, calibrations and applications. In: Porcelli, P.D., Ballentine, C.J., Wieler, R., (Eds.). Noble Gas Geochemistry, Reviews in Mineralogy and Geochemistry 47: 819-843.

  • Galbraith, R.F. and Laslett, G.M., 1997. Statistical modeling of thermal annealing of fission tracks in zircon. Chem. Geol. 140: 123-135.

  • Gallagher, K., 1995. Evolving temperature histories from apatite fission-track data. EPSl 136: 421-435.

  • Glasmacher, U.A., Zentilli, M., Grist, A.M., 1998. Apatite fission-track thermochronology of Palaeozoic sandstones and the Hill-Intrusion, Northern Linksrheinisches Schiefergebirge, Germany. In: van den Haute, P., de Corte, F. (Eds.). Advances in Fission-Track Geochronology, Solid Earth Sciences Library 10, 151-172, Kluwer Academic Publishers, London.

  • Gleadow, A.J.W. and Duddy, I.R., 1981. A natural long term track annealing experiment for apatite. Nucl. Tracks 5: 169-174.

  • Green, P.F., 1988. The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and systems calibration. EPSL 89: 335-352.

  • Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R. and Laslett, G.M., 1985. Fission track annealing: track length measurements and the form of the Arrhenius plot. Nucl. Tracks 10: 323-328.

  • Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R. and Laslett, G.M., 1986. Thermal annealing of fission tracks in apatite, 1. A quantitative description. Chem. Geol. (Isot. Geosci. Sect.), 59: 237-253.

  • Green, P.F., Duddy, I.R., Gleadow, A.J.W., and Lovering, J.F., 1989. Apatite fission track analysis as a paleotemperature indicator for hydrocarbon exploration. In: N.D. Naeser and T.H. McCulloh (eds.), Thermal history of Sedimentary Basins: Methods and Case Histories. Springer-Verlag, Berlin: 181-195.

  • Hallet, B., Hunter, L., Bogen, J., 1996. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Am. J. Sci. 258A, 80-97.

  • Ketcham, R.A., 2003. Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. Am. Min. 88, 817-829.

  • Ketcham, R.A., 2005. Forward and inverse modeling of low-temperature thermochronometry data. In: Reiners, P.W., Ehlers, T.A. (eds.), Low-Temperature Thermochronology: Techniques, Interpretations, and Applications. Rev. Min. and Geoch. 58, 275-314.

  • Ketcham, R.A., Donelick, R.A., and Carlson, W.D., 1999. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist, 84: 1235-1255.

  • Ketcham, R.A., Donelick, R.A., Donelick, M.B., 2000. AFTSolve: A program for multi-kinetic modeling of apatite fission-track data. Min. Soc. Am., Geol. Mat. Res. 2, 1- 32.

  • Kohn, B.P., Foster, D.A., and Farley, K.A., 2002. Low temperature thermochronology of apatites with exceptional compositional variations: The Stillwater Complex, Montana revisited. Geotemas 4: 103-105.

  • Laslett, G.M., Gleadow, A.J.W. and Duddy, I.R., 1984. The relationship between fission track length and track density distributions. Nucl. Tracks 9: 29-38.

  • Laslett, G.M., Green, P.F., Duddy, I.R. and Gleadow, A.J.W., 1987. Thermal annealing of fission tracks in apatite, 2. A quantitative analysis. Chem. Geol. 65: 1-13.

  • Lippolt, H.J., Leitz, M., Wernicke, R.S. and Hagedorn, B., 1994. (U+Th)/He dating of apatite experience with samples from diffferent geochemical environments. Chem. Geol. 112: 179-191.

  • Lutz, T.M. and Omar, G., 1991. An inverse method of modeling thermal histories from apatite fission-track data. EPSL 104: 181-195.

  • Mancktelow, N.S. and Grasemann, B., 1997. Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270: 167-195.

  • Meesters, A.G.C.A. and Dunai, T.J., 2002a. Solving the production-diffusion equation for finite diffusion domains of various shapes: Part I. Implications for low-temperature, (U-Th)/He thermochronology. Chem. Geol. 186: 333-344.

  • Meesters, A.G.C.A. and Dunai, T.J., 2002b. Solving the production-diffusion equation for finite diffusion domains of various shapes: Part II. Application to cases with -ejection and non-homogeneous distribution of the source. Chem. Geol. 186: 347-363.

  • O’Sullivan, P.B., and Parrish, R.R., 1995. The importance of apatite composition and single grain ages when interpreting fission track data from plutonic rocks: A case study from the Coast Ranges, British Columbia. Earth and Planet. Sci. Letts., 132: 213-224.

  • Reiners, P.W. and Farley, K.A., 2001. Influence of crystal size on apatite, (U-Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming, EPSL 188: 413-420.

  • Stüwe, K., Hintermüller, M. 2000. Topography and isotherms revised: the influence of laterally migrating drainage divides. EPSL 184, 287-303.

  • Stüwe, K., White, L., Brown, R. 1994. The influence of eroding topography ion steady state isotherms. Application to fission track analysis. EPSL 124, 63-74.

  • Wagner, G.A. and Van den haute, 1992. Fission-Track Dating. Enke Publisher285 pp.

  • Warnock, A.C., Zeitler, P.K., Wolf, R.A. and Bergmann, S.C., 1997. An evaluation of low-temperature apatite (U-Th)/He thermochronology. Geochim. Cosmochim. Acta 61: 5371-5377.

  • Werner, O., and Lippolt, H.J., 2000. White-mica 40Ar/39Ar ages of Erzgebirge metamorphic rocks: simulating the chronological results by a model of Variscan crustal imbrication: Geological Society, London, Special Publications, 179, 323-336.

  • Willet, S.D., 1997. Inverse modeling of annealing of fission tracks in apatite 1: a controlled random search method. Am. J. Sci. 297: 939-969.

  • Wolf, R.A., Farley, K.A. and Silver, L.T., 1996. Helium diffusion and low temperature thermochronometry of apatite. Geochim. Cosmochim. Acta 60: 4231-4240.

  • Wolf, R.A., Farley, K.A. and Kass, D.M., 1998. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chem. Geol. 148: 105-114.

to top of page